(1) 23-25

阀门零件的表面清洁度

n

东北闽门公司 萬腾江

TH 134

由于阀门是在受压密封的复杂条件下工作,所以对产品质量提出了更高的要求。经实践证明,一些符合精度要求的阀门零件,常常是不完全能装配出合格的阀门产品.其主要原因是零件表面不清洁,污物擦伤了密封面的缘故。清洁度是衡量污物对阀门质量危害程度的一个参数,通常以内腔杂质的含量来表示。清洁度反映了生产管理和生产过程的概貌.标志生产单位文明生产的程度。

1. 工件表面不清洁物的产生

在机械加工过程中,没有清除的毛刺、飞边遇有其他物体的推挤,而倒向已加工零件表面。同时毛刺上挂有纤维细絮,造成了污物的积存。有时为了改善切削条件,减少刀具的磨损,在加工的过程中,浇注了一定量的冷却被和润滑。(如轧丝、拉削和挤压等),这些冷却被和润滑。吸附和粘结了灰尘锈末,在零件表面形成。。 垢。

热处理后的非加工表面产生的氧化皮及各种冷却介质的结晶和粘结,使非加工表面污物增多。铸造表面的粘砂,在外部界面可以通过喷丸清除,然而复杂形状的内表面上的粘砂很难清除,仍然以其一定的亲合力附在表面上。由于锈蚀的作用,使物体表面受到氧化和电化锈蚀。

近几年产品的清洁度已经引起了国内外的重视,这是因为清洁度影响了产品的质量。机械零件除符合规定精度要求外,而且需要清洁,尽管灰尘很小,也会擦伤表面而影响产品密封性。在工件周转中产品表面的污物还能污染环境,锈蚀和污染与其接触的物体,划伤这些工件表面。不清洁物进入配合面后,将磨损高精度表面,使产品寿命及装配精度下降,甚至造成设备事故。

一些小型的轴套类零件·由于非加工面少不需要很繁杂的工序就可擦洗干净。对于非加

工表面多的零件如阀体等较重零件,在溶液中不易擦洗干净。阀体内腔具有复杂的型面,对于擦洗的棱角经常用压缩空气吹风的方法来净化。综观不清洁物的起因和形成,我们认为目前实施的方法是不能完全达到规定的产品清洁度,只是吹掉了表面的附着物,对于油污、锈迹、毛刺和粘砂等、还缺乏彻底根除的能力。同时,被吹掉的附着物在空气中四处飘落、损害人们的健康,造成车间里的污物从一个角落投向另一个角落的恶性循环。

2. 磨液喷丸抛光清洗机

通过磨液抛光的特种工艺试验,我们发现磨液的磨粒在压缩空气的作用下,得到了加速的运动,增加了磨粒的功能和轰击力。如果加大磨粒粒度,提高流速和流量,可以冲磨更大的表而不平点及堆积物。根据流体和空气能充满任意形状和空间的特点,完全可以把磨砂和铁丸带向各个角落,完成清洗污物的过程。

根据这种原理、试制成功了磨液喷丸抛光清洗机(图 1)。

(1)磨液喷丸抛光清洗机的构造及工作原理

阀门零件的清洗过程分为喷击、刷磨、冲洗和吹干等.整个过程在 10~20 秒内完成。电机带动泥石泵,把箱体中的磨液吸入管道,与此同时开启压缩空气阀门,压缩空气与磨液同时汇合于喷口。在压力为 0.5~0.6MPa 的压缩空气作用下,磨液中的铁丸、石英砂和水溶液产生加速运动,高速地打击和清洗零件的表面。表面上的凸点粘砂及氧化皮将被迅速刷净和磨光。由于溶液中含有清洁油的介质,所以油污将迅速被冲洗和刷磨,达到强力清洗的目的。

回转圆盘夹具共分四个互相隔离的工位 (图 2)。在 L 处设有 a、b 和 c 三个空气风口,b 风口是由底部来风吹向零件内腔。a 和 c 风口 分别是由左右两面来风吹向零件表面,零件被吹洁净后,夹具转到工位 I 重新装夹下一个零

件,连续清洗。

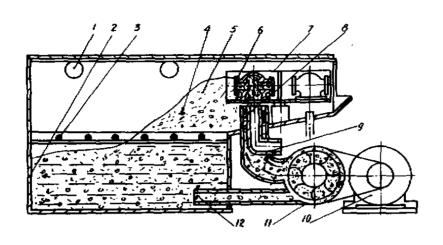


图 1 清洗机的结构

1. 獨轮 2. 額体 3. 档器 4. 水溶液中的铁丸 5. 石英砂 6. 被清洗的阀体 回转圈盘夹具 8. 喷口 9. 压缩空气管道 10. 电机 11. 泥石泵 12. 泥石泵吸口

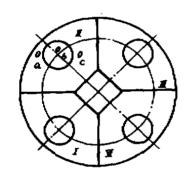


图 2 回转圆盘夹具工位

(2)基本参数和用量的选择

①磨液的配制(表 1) 磨液中的铁丸是用来击打和冲撞附着较牢固的氧化皮和铸造粘砂的。石英砂是用于冲刷掉附着程度差的氧化皮、

表 上 磨液的配制比例

材料	規格 (mm)	比例(%)
石英砂	2	30
铁丸	3	5
无色磷酸钠		5
纯碱		1
水	}	59

毛刺和刷磨光滑零件的表面,以提高其表面光 洁度。纯碱和无色碳酸钠混合后用于清洗油污

1

和防止刷磨后的零件表面氧化。水的作用是带动石英砂和铁丸作液态循环。

②泵的选择 泵是磨液喷丸的动力源,其性能的优劣直接影响清洗的质量。经分析,选取 200m 深井钻口配套用的泥石泵(表 2)。

表 2 泥石泵主要参数

	_		```		
口径	扬程	吸程	流量	转数	电机功率
(mm)	(m)	(m)	(m³/min)	(r/mun)	(kW)
125	15	7	140	850	17

③标准的制定 对清洁度应有一个统一的 考核标准,应当规定出某种材料在单位面积上 允许有多少量的污物。并应规定污物的检测方 法,如用多大力或用何种工具从材料上取下污 物。

(3)清洗效率

实践表明,零件的清洗时间越长,表面清洁度越好。如喷磨 3~4分的阀体内腔可呈现出银灰色的铸钢本色,而喷磨 30 秒左右的阀体表面虽然洁净,但仍然趋于黑色。

①清洗时间与清洁度成正比 在一定的范围内清洗时间与清洁度的关系可以用曲线表示(图 3)。从曲线可以看出时间长则污物少,但时

间不宜超出规定值,否则破坏了零件表面质量, 使产品报废。

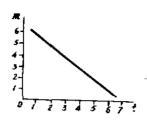


图 3 清洗时间与清洁度的关系 m--清洁度(mg) (--清洗时间(min)

②喷磨物体的选择比例 在清洗时间一定 的情况下,根据被清洗零件的材料及表面状况, 适当的增加磨液中喷磨物的浓度和质量也可以 提高清洁度。若被清洗的零件非加工表面多,可 适当增加铁丸的比例。若被清洗的零件非加工 表面少,含油污多,则适当增加含碱浓度和磨砂 浓度。

③清洗工序的确定 根据零件的技术要求 确定其清洗程序。从提高产品表面清洁度的质 量出发,应当安排清洗工序在零件的完工检查 以前和产品装配前。但有些工序对上一道工序 的表面清洁度要求严格,也要安排清洗工序,如 阀体与阀座焊接。由于焊前零件表面有油污和 其他脏物,焊接时产生气体,致使焊口处产生气 孔,影响产品的密封性,故焊前必须清洗。

磨液喷丸抛光清洗机具有体积小、结构紧 凑和效率高的特点,它的使用改变了阀门零件 表面的质量,改善了车间生产环境。磨砂、铁丸 和水溶液可循环使用,降低成本,使用可靠,很 有推广价值。 球阁 密封圈 改进

球阀密封圈的改进

宁波埃美柯小港闽门厂 吕松盛

TH 136

1. 密封圈结构分析

铜球阀球体为铜质镀铬,密封圈用聚四氟 乙烯挤压成形,密封圈与球体的接触面采用锥 面结构。

以我厂 2"球阀为例(图 1),在理想状态下 关闭球阀时,球两端长度 58mm 与密封圈锥平 面大端 Φ58.5mm 同轴。阀盖紧固时,密封圈在 圆周方向上均匀受压,即密封圈圆周上变形相

同。但实际上很少能达到理想状态,球体位置往 往由球体与阀杆连接槽的位置误差、阀杆头的 位置误差、阀体挡块的误差以及连接槽的间隙 大小等因素引起一个偏角 App(图 2)。阀盖紧固 后,密封圈圆周上 b 段素受挤压形成凸台,压紧 量越大凸台越严重,球阀启闭力矩也越大,其至 手柄方孔损坏仍不能启动。形成的凸台会使启一 闭过程中产生运动不匀和泄漏。

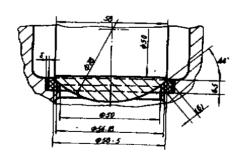


图 1

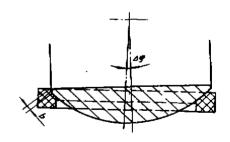


图 2